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1. introduction

In algebraic geometry, very often one encounters theorems of the following flavor:

Theorem 1.1. Let f : X → S be a proper morphism of spaces. Then for every sheaf F on X that is finite,
so is its pushforward Rf∗F .

Notice how I was being deliberately vague in the theorem above. What are X and Y ? What does “finite”
mean? Well, it turns out that this depends on the context. In the setting of coherent cohomology, “finite”
should mean coherent. On the other hand, in étale cohomology “finite” should mean constructible. Now
unfortunately (or fortunately?) I am not a number theorist, so to me I’ll take constructible to mean “a finite
set.” So in this case, finite really means - as you guessed it - finite. Let me now give two theorems (in the
coherent and étale setting) that illustrate this:

Theorem 1.2. Let f : X → S be a proper morphism of locally Noetherian schemes. Let D+
coh(X) denote

the derived category of bounded above OX-modules with coherent cohomology. Then for any F ∈ D+
coh(X),

the direct image Rf∗F ∈ D+
coh(S).

Theorem 1.3. Let f : X → S be a proper morphism of locally Noetherian schemes. Let D+
c (X) denote

the derived category of bounded above abelian sheaves (in the étale topology) with constructible cohomology.
Then for any F ∈ D+

c (X), the direct image Rf∗F ∈ D+
c (S).

Remark 1.4. I do not know/remember if the Noetherian assumption is necessary in Theorem 1.3, but it
certainly is for Theorem 1.2, because the proof of Theorem 1.2 is by dévissage on the category of coherent
sheaves on X.

In this article, I will show that there is no such analogue of a finiteness theorem in the fppf topology:

Theorem 1.5. Let k be an algebraically closed field of characteristic p. Then

H2
fppf(X,µp) ' k+ × Z/pZ.

Remark 1.6. In the étale topology, note that H2(X,µp) = 0. The reason is because µp on Xét, for X a
reduced, Fp-algebra the trivial sheaf. Indeed, let U → X be any étale open. Then since X is reduced, so is
U . Now any f ∈ µp(U) satisfies fp = 1. But in characteristic p, this says (f − 1)p = 0, hence f = 1 since U
is reduced.

2. The Brauer group of a singular curve

We first prove a preliminary result which concerning the Brauer group of a singular curve. All cohomology
considered will be in the étale topology.

Lemma 2.1. Let k be an algebraically closed field (of any characteristic) and X/k a reduced, possibly singular
curve. Then H2(X,Gm) = 0.

Proof. First we claim we may assume that X is reduced. Indeed, for a closed subscheme j : Y ⊆ X defined
by an ideal I with I2 = 0, we also have H2(X,Gm) ↪→ H2(Y,Gm). Indeed, consider the exact sequence of
étale sheaves

0→ 1 + I → Gm → j∗Gm → 0.

Taking cohomology, we see that a sufficient condition for H2(X,Gm) → H2(Y,Gm) to be injective is that
H2(X, 1+I) = 0. Observe that 1+I ' I via the map i 7→ 1+i. But now I is a coherent sheaf, and therefore
the cohomology H2(X, I) may be taken to be coherent. Since X is a curve, it follows that H2(X, I) = 0.
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The claim now follows from the fact that the nilradical of X admits a filtration with successive quotients
square-zero ideals in OX .

Let π : X̃ → X be the normalization morphism. We have a Leray spectral sequence with Ep,q2 term

Hp(X,Rqπ∗Gm) converging to Ep+q∞ := Hp+q(X̃,Gm). Consider the second abutment E2
∞ = H2(X̃,Gm).

Then X̃, being a (possibly union) of smooth curve(s) over an algebraically closed field k, must have

E2
∞ = H2(X̃,Gm) = 0

by Tsen’s theorem.

Now I claim there is an injection E2,0
2 ↪→ E2

∞, and consequently that E2,0
2 = H2(X,π∗Gm) is zero. Indeed,

since π is finite, R1π∗Gm is zero, and therefore E0,1
2 = 0, i.e. E2,0

3 = E2,0
2 /Im(E0,1

2 → E2,0
2 ) = E2,0

2 . It is
now easy to see that in fact

E2,0
2 = E2,0

3 = . . . = E2,0
∞

and hence E2,0
2 ↪→ E2

∞. Finally, I claim that

H2(X,Gm) = H2(X̃, π∗Gm)

which is sufficient to prove the lemma. Indeed, the exact sequence

0→ Gm → π∗Gm → Q→ 0

has cokernel Q supported on the singular locus of X. By [Stacks, Tag 056V], the singular locus is a proper
closed subset in X, and therefore consists of a finite union of k-valued points. But the higher étale cohomology
of an algebraically closed (even separably closed!) field is zero, so H1(X,Q) = H2(X,Q) = 0. This proves

that H2(X,Gm) = H2(X̃, π∗Gm) and we win. �

3. Proof of Theorem 1.5

From the Kummer sequence, which is exact in the fppf topology, we obtain an exact sequence

0→
H1

fppf(X,Gm)

p ·H1
fppf(X,Gm)

→ H2
fppf(X,µp)→ H2

fppf(X,Gm)[p]→ 0.

But Gm is smooth, and therefore by [BrIII, Theorem 11.7], the cohomology of Gm in either the étale or fppf
topology is the same. It follows by Lemma 1 that

H2
fppf(X,µp) '

H1
fppf(X,Gm)

p · H1
fppf(X,Gm)

' Pic(X)

p · Pic(X)
.

Theorem 1.5 now follows from the following result, noting that k+ is not p-divisible in characteristic p.

Proposition 3.1. Let k be an algebraically closed field of characteristic p, and let X/k be the cuspidal cubic.
There is an exact sequence of abelian groups

0→ k+ → Pic(X)→ Z→ 0.

Proof. As in Lemma 2.1, let π : X̃ → X denote the normalization morphism. Consider the long exact
sequence in cohomology obtained from

(1) 0→ Gm → π∗Gm → Q→ 0.

In other words,

1→ k× → k× → H0(X,Q)→ Pic(X)→ H1(X,π∗Gm)→ 0.

By a similar argument using the Leray spectral sequence in Lemma 2.1, and using the fact that X̃ ' P1, we
get

H1(X,π∗Gm) = Pic(X̃) = Z.

Therefore, it remains to show H0(X,Q) = k+. Why? Because the map k× → k× is simply the map on
constants, and hence is the identity!

https://stacks.math.columbia.edu/tag/056V
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Since Q is supported at the cusp, to compute H0(X,Q) it is enough to describe the stalk of Q at the cusp
x0 ∈ X. We must now work in coordinates: Consider the commutative diagram

0 k{t2, t3}× k{t}× Qx0
0

0 kJt2, t3K× kJtK× k+ 0

α β γ

where k{t2, t3} is the strict henselization of k[t2, t3] at the origin. The top row of this diagram is the stalk
of (1) at x0 ∈ X (in the étale topology). The maps α, β are the ones obtained from the universal property
of the henselization (note the henselization and strict henselization are the same since the residue field is
algebraically closed). The map γ is the induced map on quotients, which exists since since all α, β (on the
level of rings) are local homomorphisms. the projection map kJtK→ k+ is given by

f(t) 7→ d

dt
log f(t)

∣∣
t=0

.

Note the logarithmic derivative is well-defined because f(t) ∈ kJtK implies that f(0) 6= 0.

It is sufficient to show that the map γ is an isomorphism. The key thing we must show is that γ is
surjective (injectivity is kinda clear). Now any a1 ∈ k+ is hit by the polynomial f(t) := 1 +a1t ∈ kJtK×. But
this polynomial lies in k{t}×, i.e. is algebraic. Why? It satisfies p(t, f(t)) = 0, where

p(x, y) = 1 + a1x− y.
Hence γ is surjective and we win. �
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