
THE PETER-WEYL THEOREM

DAVID BENJAMIN LIM

1. introduction

A deep result in the representation theory of compact Lie groups is the theorem of the highest weight which
asserts the following. Given a compact Lie group G, there is a bijective correspondence between irreducible,
finite-dimensional complex representations of G and dominant integral elements of the weight lattice. The
hardest part in the proof the theorem is the construction of an irreducible representation corresponding to
some dominant integral element.

Three approaches to this construction are possible. The first is pure algebra and uses something called a
Verma module; one obtains the desired irreducible representation as a quotient of some infinite-dimensional
space. The second approach is via the Borel-Weil Theorem and the rough idea is like this. For a maximal
torus T of G, one forms the quotient G/T and considers the twisted line bundle G×ρn C over G/T . Here ρn
is a character of T corresponding to some dominant integral element µ. The space of global sections is then
the irreducible representation of G corresponding to µ with the action of G given by h ·f(g) = f(h−1g). The
third approach is to obtain the desired irreducible representation as a certain finite dimensional subspace of
L2(G).

The goal of this expository essay will be to understand the Peter-Weyl Theorem, a key ingredient needed
in the third approach above. There are several versions of this theorem including one which gives a decom-
position of L2(G) as a G×G-bimodule. For our purposes we would like a version from the point of view of
functional analysis and not representation theory. In view of this, we will be concerned with the following
statement that holds for more general compact Hausdorff groups.

Theorem 1.1 (Peter-Weyl). Let G be a compact Hausdorff group. The matrix coefficients of G are dense
in L2(G), the space of all square-integrable functions on G.

2. Preliminaries

2.1. Haar Measures. Given a compact (not necessarily Hausdorff) group G, there is a regular Borel mea-
sure µL that is left-invariant and unique up to multiplication by a constant. This is called the left Haar
measure on G. By left-invariance we mean that µL(gX) = µL(X) for any g ∈ G and measurable subset
X ⊆ G. Similarly, there is a right Haar measure µR on G that is unique up to multiplication by a constant.
It turns out these measures have the property that any compact set has finite measure, in particular the
whole of G has finite measure. We will not prove these properties or the existence of Haar measures; for this
we refer the reader to Chapter 11 of [Fol99]

The hypothesis that G is compact is important in that it ensures the left and right-invariant measures
coincide. If G is not compact, these may not agree as the following example shows: Take G to be the
semidirect product RoR>0 where R>0 is the multiplicative group of positive reals. Topologically, this may
be identified with the upper half plane. Using the usual change of variables formula, we see for any Lebesgue
measurable set E that

µL(E) =

∫
E

y−2 dx dy, µR(E) =

∫
E

y−1 dx dy

are left and right-invariant measures respectively on G that do not agree. Thus from now on, we work only
with compact groups G on which we fix a left-invariant Haar measure µL. For convenience, we normalize
µL so that the measure of G is 1.

Like any measure space, we may define analogously the concepts of Haar measurability and Haar inte-
grability. For integration, we will often write

∫
G
f(g) dg in place of

∫
G
f(g) dµL(g) for brevity. Though, if

1



2 DAVID BENJAMIN LIM

the need to emphasize the measure µL arises we will write the latter. In summary, the existence of a Haar
measure allows us to do analysis on compact groups.

2.2. Some Representation Theory. Recall that a representation of G is a pair (π, V ) where V is a finite-
dimensional C-vector space and π : G → GL(V ) a continuous group homomorphism. For an example of a
representation, take G to be the unitary group U(n) and (π, V ) the representation that views an element of
U(n) as an invertible transformation of Cn. This is sometimes known as the standard representation.

Associated to any representation (π, V ) is something called the character χ. It is a complex valued
function G that sends an element g ∈ G to Tr(π(g)). In the case of compact groups, it is an amazing fact
that the character completely determines the representation. That is, if V and W are representations with
characters χV and χW respectively, then χV = χW if and only if V 'W . We refer the reader to Chapter 2
of [Bum13] for details.

Let us remark that because the trace is continuous and G is compact, the character of any representation
is in L2(G). Furthermore, if e1, . . . , en is a basis for V and L1, . . . , Ln the associated dual basis, we may
write χ(g) =

∑n
i=1 L(π(g)ei). This motivates the following definition.

Definition 2.1. A matrix coefficient is a function Π : G → C such that Π(g) = L(π(g)v) for some
representation (π, V ) of G, v ∈ V and L ∈ V ∗.

From this definition it is immediate that a matrix coefficient is a continuous function. One may also prove
that the sum and product of matrix coefficients is a matrix coefficient. There is not much to say about the
proof of this last fact except to notice the following. Given matrix coefficients Π1(g) = L1(π1(g)v1) and
Π2 = L2(π2(g)v2), the function (L1 ⊕ L2)(w1, w2) := L1(w1) + L2(w2) is a linear functional on V1 ⊕ V2.
Similarly (L1 ⊗ L2)(w1 ⊗ w2) := L1(w1)L2(w2) is a linear functional on V1 ⊗ V2.

3. Proof of the Peter-Weyl theorem

Having discussed the required preliminaries we are now ready to prove Theorem (3). To do this we will
first discuss convolution, norms on a compact group and prove Propositions 3.2 and 3.3. These propositions
will then be used to prove Proposition 3.4. Theorem (3) will then be a corollary of this proposition. Since
the statement of Theorem (3) requires G to be Hausdorff, we will assume this for the rest of the section. In
reality this is a mild assumption because the Peter-Weyl theorem is usually applied to compact Lie groups
which are always Hausdorff. This is because any Lie group is a smooth manifold, and every smooth manifold
in particular is a locally Euclidean, second-countable Hausdorff space (see Chapter 1 of [Lee13]).

Let C(G) denote the space of all continuous, complex-valued functions on G. With respect to the infinity
norm ‖f‖∞ := supg∈G |f(g)|, C(G) is a Banach space. Given two functions f1, f2 ∈ C(G), we may define
their convolution

(f1 ∗ f2)(g) :=

∫
G

f1(gh−1) f2(h) dh

Lemma 3.1. The convolution (f1 ∗ f2)(g) is also equal to∫
G

f1(h) f2(h−1g) dh.

Proof. Fix g ∈ G. We may write (f1 ∗ f2)(g) =
∫
G
f1(gh−1) f2(h) dµL(h) as∫

G

(f1 ◦ φg)(h) (f2 ◦ φg)(h−1g) dµL(h)

where φg : G → G is the group homomorphism h 7→ gh−1. Applying [Mor13, Proposition 9.9] to the real
and imaginary parts shows that∫

G

(f1 ◦ φg)(h) (f2 ◦ φg)(h−1g) dµL(h) =

∫
G

f1(h) f2(h−1g) d(φg)∗µL(h),
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where (φg)∗µL is the pushforward measure defined by (φg)∗µL(X) = µL(X−1g). Here X is any measurable
set and X−1 = {x−1 : x ∈ X}. The key point now is that (φg)∗µL(X) = µL(X). Indeed, we have

µL(X−1g) = µL((gX)−1)

= µL(gX)

= µL(X).

We passed from the first to second line using [Bum13, Proposition 1.3]. This completes the proof of the
lemma. �

In a similar fashion we may define the convolution of two functions f1, f2 ∈ L2(G) that are not necessarily
continuous. Next, because we have normalized the Haar measure of G to be 1, we have the inequalities

(1) ‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞.

To see the first of these, we use the usual trick of multiplying a function by 1 and applying Cauchy-Schwarz:

‖f‖1 =

∫
G

|f(g)| · 1 dg ≤
(∫

G

|f(g)|2 dg
∫
G

12 dg

)1/2

= ‖f‖2.

The second inequality is also straightforward:

‖f‖22 =

∫
G

‖f(g)|2 dg ≤ sup
g∈G
|f(g)|2

∫
G

dg = ‖f‖2∞.

Now let φ be any function in L2(G) and consider the linear operator Tφ : L2(G) → L2(G) given by
Tφf := φ ∗ f . The first proposition of this section concerns important finiteness properties of this operator.

Proposition 3.2. If φ ∈ L2(G), then Tφ is a bounded operator on L2(G). Furthermore, Tφ is compact if

and only if φ(g−1) = φ(g) is self-adjoint.

Proof. First we prove that Tφ maps L2(G) itself. Take any f ∈ L2(G); by Cauchy-Schwarz we have

|Tφf |2 ≤
(∫

G

|φ(gh−1)|2 dh
)(∫

G

|f(h)|2 dh
)

=

(∫
G

|φ(gh−1)|2 dh
)
‖f‖22

by left-invariance. Hence

‖Tφf‖22 =

∫
G

∣∣∣∣∫
G

φ(gh−1) f(h) dh

∣∣∣∣2 dg
≤ ‖f‖22

∫
G

∫
G

|φ(gh−1)|2 dh dg

= ‖f‖22
∫
G

∫
G

|φ(f)|2dh dg

= ‖f‖22 · ‖φ‖22
< ∞,

where the third line follows from reasoning similarly as the proof of Lemma 3.1. This shows that Tφ maps
L2(G) to itself; in fact the reader will also notice the inequality ‖Tφf‖22 ≤ ‖f‖22 · ‖φ‖22 also shows that Tφ is
bounded. Furthermore, the fact that Tφ is compact comes from Tφ being a Hilbert-Schmidt operator with
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L2(G×G) kernel φ(hg−1). Lastly, if φ(g−1) = φ(g) we have

〈Tφ(f1), f2〉 =

∫
G

(∫
G

φ(gh−1) f1(h) dh

)
f2(g) dg

=

∫
G

∫
G

φ(gh−1) f1(h)f2(g) dg dh (Fubini’s theorem)

=

∫
G

f1(h)

∫
G

f2(g)φ(hg−1) dg dh (since φ(gh−1) = φ(hg−1))

=

∫
G

f1(h)

∫
G

f2(g)φ(hg−1) dg dh (conjugate symmetry)

= 〈f1, Tφf2〉.

The use of Fubini’s theorem is justified since any L2-function is also in L1 in view of (1). �

Proposition 3.3. Suppose φ ∈ L2(G) and λ ∈ C. The λ-eigenspace V (λ) of Tφ is invariant under right-
translations φ(g) for all g ∈ G. That is, if f(x) ∈ V (λ) then so is φ(g)f(x) = f(xg).

Proof. If Tφf = λf then (Tφφ(g)f)(x) =
∫
G
φ(xh−1) f(hg) dh. Applying the change of variables h 7→ hg−1

and reasoning similarly as the proof of Lemma 3.1 shows that∫
G

φ(xgh−1) f(h) dh = ρ(g)(Tφf)(x) = λφ(g)f(x).

�

We are now ready to use Propositions 3.2 and 3.3 to prove Proposition 3.4. Namely, that the space of
matrix coefficients is dense in C(G):

Proposition 3.4. Let G be a compact Hausdorff group. The space of matrix coefficients is dense in C(G).

Our proof follows [Tao11] and is very beautiful. By the Stone–Weierstrass theorem we just need to show
the matrix coefficients separate points. In fact, using right-translation it is enough to show for any g ∈ G\{e},
there is a matrix coefficient Π so that Π(g) 6= Π(e). We will prove there exists a finite-dimensional subspace
V ⊆ L2(G) on which ρ(g) does not act by the identity using Proposition 3.2 and the spectral theorem. The
subspace V will then be a representation of G, and using this we produce a matrix coefficient Π such that
π(g) 6= Π(e).

Proof. First we show for all g ∈ G, there is some φ ∈ L2(G) such that φ(h−1) = φ(h) (for all h ∈ G) for
which ρ(g) is not the identity on at least one, non-zero eigenspace of Tφ. Suppose otherwise; then there is

g ∈ G such that for any φ satisfying φ(h−1) = φ(h), ρ(g) is the identity on every non-zero eigenspace of Tφ.
Now we know that Tφ is compact and self-adjoint by Proposition 3.2. Thus by the spectral theorem,

L2(G) = kerTφ ⊕
⊕
λ6=0

Vλ

with each V (λ) finite-dimensional. Since ρ(g) is the identity on every V (λ), it follows that

im(ρ(g)− 1) = (ρ(g)− 1)(kerTφ).

Furthermore, the subspace on the right is contained in kerTφ by Proposition 3.3. Thus

Tφ(ρ(g)− 1)f = 0

for every f, φ ∈ L2(G) with φ satisfying φ(h−1 = φ(h)) for all h ∈ G. In other words,

(2) ρ(g)(φ ∗ f) = φ ∗ f.

However, a contradiction arises from this as we will produce functions f, φ ∈ L2(G) for which (2) does not
hold: Choose an open neighborhood U about the identity with g /∈ U2 (here we use that G is Hausdorff).
Take f = φ = χU . Then f ∗ g is non-zero at x = e but vanishes at x = g. We conclude that for any
g ∈ G\{e}, there is φ ∈ L2(G) such that ρ(g) is not the identity on a finite-dimensional, non-zero eigenspace
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V (λ) of L2(G). To this end, choose f ∈ V (λ) for which ρ(g)f 6= f . Then there is a linear functional
L ∈ V (λ)∗ such that L(φ(g)f) 6= L(f). Now note that

ρ : G → V (λ)

g 7→ ρ(g)

defines a representation of G by finite-dimensionality of V (λ) and Proposition 3.3. Hence we may consider
the matrix coefficient Π(g) := L(ρ(g)f) which by construction satisfies Π(g) 6= Π(e). Now observe that
the complex conjugate of a matrix coefficient is also a matrix coefficient. Thus we may apply the Stone–
Weierstrass theorem to finish the proof. �

All the hard work is done and the proof of Theorem now comes naturally. Since C(G) is dense in L2(G),
Proposition 3.4 completes the proof of Theorem 3.

References

[Bum13] Daniel Bump, Lie groups, second ed., Graduate Texts in Mathematics, vol. 225, Springer, New York, 2013.

MR 3136522
[Fol99] Gerald B. Folland, Real analysis, second ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc.,

New York, 1999, Modern techniques and their applications, A Wiley-Interscience Publication. MR 1681462

[Lee13] John M. Lee, Introduction to smooth manifolds, second ed., Graduate Texts in Mathematics, vol. 218, Springer, New
York, 2013. MR 2954043

[Mor13] Scott Morrison, Integration theory, https://tqft.net/web/teaching/current/Analysis3/LectureNotes/09.

Integration.theory.pdf, 2013, Accessed: 5/16/2021.
[Tao11] Terrence Tao, 254a, notes 3: Haar measure and the peter-weyl theorem, https://terrytao.wordpress.com/2011/09/

27/254a-notes-3-haar-measure-and-the-peter-weyl-theorem/, 2011, Accessed: 5/17/2021.

https://tqft.net/web/teaching/current/Analysis3/LectureNotes/09.Integration.theory.pdf
https://tqft.net/web/teaching/current/Analysis3/LectureNotes/09.Integration.theory.pdf
https://terrytao.wordpress.com/2011/09/27/254a-notes-3-haar-measure-and-the-peter-weyl-theorem/
https://terrytao.wordpress.com/2011/09/27/254a-notes-3-haar-measure-and-the-peter-weyl-theorem/

	1. introduction
	2. Preliminaries
	2.1. Haar Measures
	2.2. Some Representation Theory

	3. Proof of the Peter-Weyl theorem
	References

