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1. Introduction

Let k be a separably closed field of characteristic not 2, and A/k an abelian surface. Then it is a basic fact
(e.g. see [Huy16, Example 1.3 (iii)]) that one can make a K3 surface out of A. The construction is as follows.
Consider the involution ι : A → A given by x 7→ −x. The fixed locus of this involution is exactly A[2], a
finite constant closed k-subgroup scheme of A with 16 k-points. Let Z := A[2], and consider the blow-up
p : BlZ A→ A. By the universal property of the blow-up, the involution ι lifts to a map ι̃ : BlZ A→ BlZ A
such that the diagram

BlZ A BlZ A

A A

ι̃

p p

ι

commutes. Furthermore, by the uniqueness part of the statement of the universal property of BlZ A, we
deduce easily that ι̃ is also an involution.

Now the blow-up BlZ A is a projective variety over k with an action of Z/2Z via the involution ι̃. Therefore,
the categorical quotient X := BlZ A/(Z/2Z) exists in the category of schemes. The scheme X constructed
in this way is called the Kummer surface associated to A, and turns out to be a K3 surface. In particular,
H1(X,OX) = 0, so the Picard scheme PicX/k of X is étale, and Pic(X) is therefore a finitely-generated
abelian group.

For an arbitrary proper scheme Y/k, recall that the Néron–Severi group of Y is a finitely generated abelian
group [SGA6, Exposé XIII, Théorème 5.1]. Therefore, we may consider the Picard number ρ(Y ), defined as
the rank of the Néron–Severi group of Y (which for X is just the rank of the Picard group). It is proven in
[Shi79, Proposition 3.1] that the Picard number of X is given by the formula ρ(X) = 16 + ρ(A). However,
a crucial step in Shioda’s proof relies on a calculation in [Shi75], of which we are not able to access a copy
online. In this note, we give an explicit proof of this fact that is entirely self-contained. We do not use any
Hodge theory, e.g. we do not study the complement of Pic(X) in H2(X,Z), i.e. the transcendental lattice
T (X).

Theorem 1.1. Let k be a separably closed field of characteristic not 2, and A/k an abelian surface. Let X
denote the Kummer surface associated to A. Then the Picard number of X is given by

ρ(X) = 16 + ρ(A).

2. Preliminaries

In this section, we record a crucial result about abelian varieties that we will need. Let k be a separably
closed field of characteristic not 2, and let A/k be an abelian variety (of arbitrary dimension). The group
Z/2Z acts on Pic(A) by L 7→ [−1]∗L, and this action descends to one on the subgroup of numerically trivial
line bundles Pic0(A). In particular, the sequence

(1) 0→ Pic0(A)→ Pic(A)→ NS(A)→ 0

is an exact sequence of Z/2Z-modules.

Proposition 2.1. Taking Z/2Z-invariants in (1), we obtain an exact sequence

0→ Â[2](k)→ Pic(A)Z/2Z → NS(A)→ 0,
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where Â is the dual abelian variety of A. In particular, Pic(A)Z/2Z is a finitely generated abelian group of
rank equal to the Picard number ρ(A) of A.

Proof. Let us first recall several facts about multiplication by n on A:

(a) For L ∈ Pic0(A), [n]∗L ' L⊗n [Con15, Proof of Lemma 5.2.5].
(b) For L ∈ Pic(A), we have

[n]∗L ' L⊗n
2

mod Pic0(A).

In other words, [n]∗ has the effect of multiplication by n2 on NS(A) [Con15, Lemma 7.5.2].

Granting these facts, let us first compute Pic0(A)Z/2Z. By (a), a line bundle L ∈ Pic0(A) satisfies [−1]∗L = L
precisely when L⊗2 ' 0. In other words,

Pic0(A)Z/2Z = Â[2](k).

Next, by (b) above, the Z/2Z-action on NS(A) is trivial, so NS(A)Z/2Z = NS(A). Finally, we show that
H1(Z/2Z,Pic0(A)) = 0, which will complete the proof of the proposition. Write σ for the generator of Z/2Z,
and let N denote the “norm” map

N : Pic0(A) → Pic0(A)

L 7→ L ⊗ [−1]∗L.
By the calculation of the cohomology of finite cyclic groups,

H1(Z/2Z,Pic0(A)) ' kerN/(σ − 1) Pic0(A).

By (a) above, we have kerN = Pic0(A). On the other hand, for L ∈ Pic0(A),

(σ − 1)(L) = [−1]∗L ⊗ L∨ ' (L∨)⊗2.

In other words, (σ−1) has the effect of multiplication by −2 on Pic0(A). But now recall that Pic0(A) = Â(k),

and [−2] : Â → Â is surjective étale. Since k is separably closed, the map on k-points is surjective,
and therefore (σ − 1) Pic0(A) = Pic0(A), from which the vanishing of the cohomology group in question
follows. �

3. Proof of Theorem 1.1

Let p1, . . . , p16 be the points in A[2](k), let Ei be the preimage of pi in BlZ A (the exceptional divisors),

and let Ẽi denote the image of Ei in the quotient X. Define

Ẽ :=

16⋃
i=1

Ẽi.

E :=

16⋃
i=1

Ei.

It is proven in [Ba0̆1, Theorem 10.6] that the Ẽi’s are irreducible divisors in X, and are furthermore Z-
linearly independent in Pic(X). Therefore, identifying the Weil class group of X with its Picard group (by
smoothness), we obtain the exact sequence

(2) 0→
16⊕
i=1

Z[Ẽi]→ Pic(X)→ Pic(X − Ẽ)→ 0

with the group on the left isomorphic in the obvious way to Z16. Now the formation of the quotient

π : BlZ A → X commutes with open immersions. More precisely, for any open subscheme Ṽ ⊂ X, if we let

V := π−1(Ṽ ), then the map π : V → Ṽ is the categorical quotient of V by Z/2Z. Therefore,

X − Ẽ ' π−1(X − Ẽ)/(Z/2Z).

But now observe that
π−1(X − Ẽ) ' BlZ A− E ' A−A[2],

so
(A−A[2])/(Z/2Z) ' X − Ẽ.
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Therefore, the result ρ(X) = 16+ρ(A) will follow from (2) if we can show that Pic((A−A[2])/(Z/2Z)) is
a finitely generated abelian group of rank equal to ρ(A). To this end, define U := A−A[2] and G := Z/2Z.
Since the action of G on U is free, the quotient map U → U/G is a Galois cover [SGA3, Exposé V, Théorème
4.1(iii) and (iv)], and we have an associated Hochschild-Serre spectral sequence

Hi(G,Hj(U,Gm)) =⇒ Hi+j(U/G,Gm).

The low-degree terms of this spectral sequence are

0→ H1(G,H0(U,Gm))→ Pic(U/G)→ Pic(U)G → H2(G,H0(U,Gm)).

Now before we calculate any cohomology, we make the observation that

H0(U,Gm) = H0(A,Gm) = k×.

Indeed, this is true by Hartogs’ Lemma since A is smooth (a fortiori normal!) and A \ U is codimension 2
in A. Also, observe that the Galois action of G on k× is trivial.

We now compute H1(G,H0(U,Gm)). By the discussion above, this is isomorphic to Hom(G, k×) = µ2(k).
On the other hand, by the calculation of the cohomology of finite cyclic groups, H2(G, k×) ' k×/(k×)2.
Since k is separably closed, this is zero and so Pic(U/G) sits in an exact sequence

(3) 0→ µ2(k)→ Pic(U/G)→ Pic(U)G → 0.

By the equivalence of the Picard group with the Weil divisor class group for regular schemes, and because
A\U has codimension 2 in A, Pic(U) = Pic(A). By Proposition 2.1, rk Pic(A)G = ρ(A). Combining this
with (3) yields the equality

rk Pic((A−A[2])/(Z/2Z)) = ρ(A),

as desired.
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nian original by Vladimir Maşek and revised by the author. MR 1805816

[Con15] Brian Conrad, Abelian varieties, 2015, Lecture notes by Tony Feng.
[Huy16] Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge

University Press, Cambridge, 2016. MR 3586372
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Demazure et A. Grothendieck. MR 0274458
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